token
TokenSampler
Bases: SubModel
Base class for sampling a token from a potential's vocabulary.
TokenSampler
s generate properly weighted samples with respect to a target
potential.
Given a context of tokens \(x_1, \ldots, x_{n-1}\) in the target potential's vocabulary,
a TokenSampler
samples a token \(x_n \in \textsf{target.vocab_eos}\) and weight \(w\).
The sampled token and weight are properly weighted with respect to $$ \textsf{target.logw_next}(x_n | x_1, \ldots, x_{n-1}) $$
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target
|
Potential
|
The potential that samples are properly weighted with respect to. |
required |
Source code in genlm/control/sampler/token.py
start_weight()
async
sample(context, draw)
async
Sample a token and weight from the target
potential's vocabulary.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
context
|
list[int]
|
A sequence of tokens in the |
required |
draw
|
callable
|
A callable that draws a sample from a distribution. |
required |
Returns:
Type | Description |
---|---|
(token, weight, logp)
|
A tuple containing the sampled token, weight, and log-probability of the sampled token. |
Source code in genlm/control/sampler/token.py
smc(n_particles, ess_threshold, max_tokens, critic=None, **kwargs)
async
Generate sequences using sequential Monte Carlo (SMC) inference with this token sampler and an optional critic.
This method is a convenience wrapper around SMC
.
See SMC
for more details on the generation process.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n_particles
|
int
|
The number of particles to use in the SMC algorithm. |
required |
ess_threshold
|
float
|
The threshold for the effective sample size (ESS). |
required |
max_tokens
|
int
|
The maximum number of tokens to generate. |
required |
critic
|
Potential
|
A potential function that guides the generation process by scoring candidate sequences. Must have the same token type as the token sampler. |
None
|
**kwargs
|
dict
|
Additional keyword arguments to pass to |
{}
|
Source code in genlm/control/sampler/token.py
DirectTokenSampler
Bases: TokenSampler
Samples individual tokens directly from the log-normalized logw_next
function
of a potential.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
potential
|
Potential
|
The potential function to sample from |
required |
Warning
Only use this sampler if the potential's logw_next
method is efficient. This is the case
for potentials like PromptedLLM
, but for custom potentials with a large vocabulary size,
the default implementation of logw_next
generally will not be efficient, and thus this
sampler will be slow.
Source code in genlm/control/sampler/token.py
sample(context, draw=None)
async
Sample a token and weight that are properly weighted with respect to the target potential's logw_next
method.
Given a context of tokens \(x_1, \ldots, x_{n-1}\) in the target potential's vocabulary, this method samples a token \(x_n \in \textsf{target.vocab_eos}\) and weight \(w\).
The sampled token and weight are properly weighted with respect to $$ \textsf{target.logw_next}(x_n | x_1, \ldots, x_{n-1}) $$
The returned weight corresponds to the log normalizing constant of \(\textsf{target.logw_next}(x_n | x_1, \ldots, x_{n-1})\).
Returns:
Type | Description |
---|---|
(token, weight, logp)
|
A tuple containing the sampled token, weight, and log-probability of the sampled token. |
Source code in genlm/control/sampler/token.py
SetTokenSampler
Bases: TokenSampler
Samples individual tokens by sampling a weighted set of tokens and then selecting one proportional to its weight.
This class wraps a SetSampler
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
set_sampler
|
SetSampler
|
The set sampler to sample from |
required |
Source code in genlm/control/sampler/token.py
sample(context, draw=None)
async
Sample a token and weight by sampling a weighted set of tokens from the set_sampler
and then selecting one proportional to its weight.
Given a context of tokens \(x_1, \ldots, x_{n-1}\) in the vocabulary of the set sampler's target potential, this method samples a token \(x_n \in \textsf{set_sampler.target.vocab_eos}\) and a weight.
The sampled token and weight are properly weighted with respect to $$ \textsf{set_sampler.target.logw_next}(x_n | x_1, \ldots, x_{n-1}) $$
The returned weight corresponds to the sum of the weights of the sampled set.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
context
|
list[int]
|
A sequence of tokens in the vocabulary of the set sampler's target potential. |
required |
Returns:
Type | Description |
---|---|
(token, weight, logp)
|
A tuple containing the sampled token, weight, and log-probability of the random choices made in sampling that token. |
Note
For properly weighted sampling, the set_sampler
must assign correct weights to each token. See
SetSampler
for more details.
Source code in genlm/control/sampler/token.py
cleanup()
async
Clean up the sampler.
This method should be called when the sampler is no longer needed.
AWRS
Bases: TokenSampler
Samples individual tokens through an adaptive weighted rejection sampling algorithm.
This sampler is based on the algorithm described in Fast Controlled Generation from Language Models with Adaptive Weighted Rejection Sampling
It draws properly weighted samples from the product of a non-boolean potential and a boolean condition.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
potential
|
Potential
|
The non-boolean potential. |
required |
condition
|
Potential
|
The boolean condition. This potential must only output boolean values (0 or -inf in log-space). |
required |
seed
|
int or None
|
The seed for the random number generator. |
None
|
prune_logws
|
bool
|
Whether to prune the logws to only include the tokens in the intersection of the potential and condition vocabularies |
True
|
proper_weights
|
bool
|
Whether to return properly weighted samples. If False, the sampler will only run one round of adaptive rejection sampling. |
True
|
max_accepts
|
int
|
The maximum number of tokens to accept - higher values will decrease the variance of the weight estimate. |
2
|
max_rejects
|
int or float('inf'
|
The maximum number of tokens to reject - lower values will run faster, but at the cost of returning a weight of zero for some samples where there are tokens that would be accepted if tested. |
float('inf')
|
n_monte_carlo_samples
|
int
|
The number of Monte Carlo samples to use to estimate the weight. Higher values will decrease the variance of the weight estimate, but will run slower. |
None
|
Source code in genlm/control/sampler/token.py
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
|
sample(context, verbosity=0)
async
Sample a token and weight that are properly weighted with respect to the target potential's logw_next
method via adaptive weighted rejection sampling.
The returned weight corresponds to the log normalizing constant of \(\textsf{target.logw_next}(x_n | x_1, \ldots, x_{n-1})\).
Returns:
Type | Description |
---|---|
(token, weight, nan)
|
A tuple containing the sampled token, weight, and a dummy value for the log-probability of the sampled token. |
Source code in genlm/control/sampler/token.py
improper_sample(*, logps, toks, accept, rng, max_rejects)
async
Implements a single rejection sampling loop which returns the first value found with no attempt to make a properly weighted sample.
Source code in genlm/control/sampler/token.py
recursive_awrs(*, logps, toks, accept, rng, max_rejects)
async
Implements Recursive AWRS.
This uses the observation that
E(f(X)) = P(X = x) f(x) + (1 - P(X = x)) E(f(X)|X != x)
To construct a recursive estimator of the weight from a single sampling-with-rejection run. The first time accept(x) passes, we use a simple coin flip estimator for the tail.
Source code in genlm/control/sampler/token.py
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
|
geometric_awrs(*, logps, toks, accept, rng, max_rejects, max_accepts)
async
Implements Geometric AWRS.
This simulates a single run of sampling with replacement from a sampling without replacement run, reconstructing the counts of "phantom" elements discarded from the without-replacement run as a series of draws from geometric distributions. We can then use an appropriate estimator for the with-replacement run at the end.
Source code in genlm/control/sampler/token.py
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
|