trie
TokenCharacterTrie
A trie data structure for efficient token-to-character mapping.
Source code in genlm/backend/trie/base.py
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
|
__init__(decode)
Initialize a TokenCharacterTrie
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
decode
|
list
|
List representing the token vocabulary. Each element of the list must be iterable. |
required |
Source code in genlm/backend/trie/base.py
weight_sum(ws)
Compute weight sum for each node in the trie.
For each node in the trie, this computes the sum of weights of all leaf nodes (tokens) that are descendants of that node.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ws
|
Tensor | ndarray
|
Token weights over the vocabulary of shape |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Summed weights for each node in the trie. |
Source code in genlm/backend/trie/base.py
weight_max(ws)
Compute weight max for each node in the trie.
For each node in the trie, this computes the maximum weight among all leaf nodes (tokens) that are descendants of that node.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ws
|
Tensor | ndarray
|
Token weights over the vocabulary of shape |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Weight max values for each node in the trie. |
Source code in genlm/backend/trie/base.py
batch_weight_sum(ws)
Batched equivalent of weight_sum
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ws
|
list[Tensor | ndarray]
|
Batch of token weights, each of shape |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Batch of weight values of |
Source code in genlm/backend/trie/base.py
batch_weight_max(ws)
Batched equivalent of weight_max
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ws
|
list[Tensor | ndarray]
|
Batch of token weights, each of shape |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Batch of weight max values of |
Source code in genlm/backend/trie/base.py
visualize(ws=None)
Visualize the trie structure using Graphviz.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ws
|
ndarray | None
|
Optional weight vector to display at each node.
Should be of length |
None
|
Returns:
Type | Description |
---|---|
Digraph
|
The generated graph object |
Source code in genlm/backend/trie/base.py
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
|
AsyncTokenCharacterTrie
An asynchronous wrapper for TokenCharacterTrie implementations that provides automatic request batching.
Source code in genlm/backend/trie/async_impl.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
|
__init__(trie)
Initialize an AsyncTokenCharacterTrie
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
trie
|
TokenCharacterTrie | ParallelTokenCharacterTrie
|
The underlying |
required |
Source code in genlm/backend/trie/async_impl.py
from_vocab(vocab, backend='parallel', **kwargs)
classmethod
Creates an AsyncTokenCharacterTrie
from a vocabulary.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
vocab
|
list
|
The vocabulary over which the trie will be defined. |
required |
backend
|
str
|
The trie implementation to use - either 'sequential' or 'parallel'. Defaults to 'parallel' which uses GPU acceleration when available. |
'parallel'
|
**kwargs
|
Additional arguments passed to the trie constructor |
{}
|
Returns:
Type | Description |
---|---|
AsyncTokenCharacterTrie
|
The initialized asynchronous trie instance. |
Source code in genlm/backend/trie/async_impl.py
weight_sum(ws)
async
Queue a weight_sum
request. Multiple concurrent calls will be automatically batched
together.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ws
|
Tensor
|
Token weights, shape ( |
required |
Returns:
Type | Description |
---|---|
ndarray
|
The calculated mass sums for the given distribution. |
Source code in genlm/backend/trie/async_impl.py
weight_max(ws)
async
Queue a weight_max
request. Multiple concurrent calls will be automatically batched
together.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ws
|
Tensor
|
Token weights, shape ( |
required |
Returns:
Type | Description |
---|---|
ndarray
|
The calculated max weights for the given distribution. |
Source code in genlm/backend/trie/async_impl.py
start()
Start the background processing task if not already running.
Source code in genlm/backend/trie/async_impl.py
cleanup()
async
Async cleanup - preferred method
shutdown()
Stop the background processing task and cleanup resources.
Source code in genlm/backend/trie/async_impl.py
ParallelTokenCharacterTrie
Bases: TokenCharacterTrie
A GPU-optimized version of TokenCharacterTrie
that performs weight sum and max operations in parallel.
Source code in genlm/backend/trie/parallel.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
|
weight_sum(ws)
Computes weight sums given token weights.
For each node in the trie, this computes the sum of weights of all leaf nodes (tokens) that are descendants of that node. This is efficiently implemented using sparse matrix multiplication with a pre-computed reachability matrix.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ws
|
Tensor
|
Token weights, shape ( |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Summed weights for each node in the trie, shape ( |
Source code in genlm/backend/trie/parallel.py
batch_weight_sum(ws)
Batch version of weight_sum
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ws
|
Tensor
|
Batch of token weights, shape (batch_size × |
required |
Returns:
Type | Description |
---|---|
numpy.ndarray: Summed weights for each node in the trie, shape (batch_size × num_nodes). |
Source code in genlm/backend/trie/parallel.py
weight_max(ws)
Computes the max weights given the token weights.
For each node in the trie, this computes the maximum weight among all leaf nodes (tokens) that are descendants of that node. This is efficiently implemented using parallel scatter_reduce operations on GPU.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ws
|
Tensor
|
Token weights, shape ( |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Maximum weights for each node in the trie, shape ( |
Source code in genlm/backend/trie/parallel.py
batch_weight_max(ws)
Batch version of weight_max
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ws
|
Tensor
|
Batch of token weights, shape (batch_size × |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Maximum weights for each node in the trie, shape (batch_size × num_nodes). |