vllm
PassThroughLogitsProcessor
A logits processor that stores the logprobs and passes the logits through.
Source code in genlm/backend/llm/vllm.py
AsyncVirtualLM
Bases: AsyncLM
Source code in genlm/backend/llm/vllm.py
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
|
__init__(async_llm_engine, cache_size=0, cache_opts={})
Initialize an AsyncVirtualLM
instance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
async_llm_engine
|
AsyncLLMEngine
|
The async vLLM engine instance. |
required |
cache_size
|
int
|
Maximum size of the output cache. If 0, caching is disabled. Defaults to 0. |
0
|
cache_opts
|
dict
|
Additional options to pass to the |
{}
|
Note
The cache stores the log probabilities for previously seen token sequences to avoid redundant requests. KV caching is handled internally by the vLLM engine.
Source code in genlm/backend/llm/vllm.py
from_name(model_name, engine_opts=None, **kwargs)
classmethod
Create a AsyncVirtualLM
instance from a model name.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_name
|
str
|
Name of the model to load. |
required |
engine_opts
|
dict
|
Additional options to pass to the |
None
|
**kwargs
|
Additional arguments passed to |
{}
|
Returns:
Type | Description |
---|---|
AsyncVirtualLM
|
An |
Source code in genlm/backend/llm/vllm.py
next_token_logprobs(token_ids)
async
Request log probabilities of next token asynchronously with output caching.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
token_ids_list
|
list[int]
|
A list of token IDs, representing a prompt to the language model. |
required |
Returns:
Name | Type | Description |
---|---|---|
result |
Tensor
|
Normalized log probability tensor. |
Warning
Do not use asyncio.run(next_token_logprobs())
as it may interfere with vLLM's background loop.
For synchronous usage, use the next_token_logprobs_sync()
method instead.
Source code in genlm/backend/llm/vllm.py
next_token_logprobs_sync(token_ids)
Request log probabilities of next token synchronously.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
token_ids_list
|
list[int]
|
A list of token IDs, representing a prompt to the language model. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Normalized log probability tensor. |
Source code in genlm/backend/llm/vllm.py
batch_next_token_logprobs_sync(token_ids_list)
Request log probabilities of next tokens in a batch synchronously.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
token_ids_list
|
list[list[int]]
|
A list of token ID lists, each representing a prompt to the language model. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
A tensor of normalized log probability tensors, one for each prompt in the input list. |
Source code in genlm/backend/llm/vllm.py
clear_cache()
__del__()
sample(prompt_token_ids, max_tokens, eos_token_ids, temperature=1.0, seed=None)
async
Sample from the language model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
prompt_token_ids
|
list[int]
|
The token IDs of the prompt. |
required |
eos_token_ids
|
list[int]
|
The token IDs of the end-of-sequence tokens. |
required |
temperature
|
float
|
The temperature to use to rescale the logits. Defaults to 1.0. |
1.0
|
max_tokens
|
int
|
The maximum number of tokens to generate. |
required |
seed
|
int
|
The seed for the random number generator. Defaults to None. |
None
|
Returns:
Type | Description |
---|---|
list[int]
|
The sampled token IDs. |