backend
AsyncVirtualLM
Bases: AsyncLM
A wrapper around vLLM's AsyncLLMEngine
for asynchronous next token log probability computations.
This class provides an asynchronous interface for computing log probabilities using vLLM's engine. It is optimized for next token log probability computations and supports caching of results (outputs and KV).
Source code in genlm/backend/llm/vllm.py
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
|
__init__(async_llm_engine, cache_size=0, cache_opts={})
Initialize an AsyncVirtualLM
instance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
async_llm_engine
|
AsyncLLMEngine
|
The async vLLM engine instance. |
required |
cache_size
|
int
|
Maximum size of the output cache. If 0, caching is disabled. Defaults to 0. |
0
|
cache_opts
|
dict
|
Additional options to pass to the |
{}
|
Note
The cache stores the log probabilities for previously seen token sequences to avoid redundant requests. KV caching is handled internally by the vLLM engine.
Source code in genlm/backend/llm/vllm.py
from_name(model_name, engine_opts=None, **kwargs)
classmethod
Create a AsyncVirtualLM
instance from a model name.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_name
|
str
|
Name of the model to load. |
required |
engine_opts
|
dict
|
Additional options to pass to the |
None
|
**kwargs
|
Additional arguments passed to |
{}
|
Returns:
Type | Description |
---|---|
AsyncVirtualLM
|
An |
Source code in genlm/backend/llm/vllm.py
next_token_logprobs(token_ids)
async
Request log probabilities of next token asynchronously with output caching.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
token_ids_list
|
list[int]
|
A list of token IDs, representing a prompt to the language model. |
required |
Returns:
Name | Type | Description |
---|---|---|
result |
Tensor
|
Normalized log probability tensor. |
Warning
Do not use asyncio.run(next_token_logprobs())
as it may interfere with vLLM's background loop.
For synchronous usage, use the next_token_logprobs_sync()
method instead.
Source code in genlm/backend/llm/vllm.py
next_token_logprobs_sync(token_ids)
Request log probabilities of next token synchronously.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
token_ids_list
|
list[int]
|
A list of token IDs, representing a prompt to the language model. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Normalized log probability tensor. |
Source code in genlm/backend/llm/vllm.py
batch_next_token_logprobs_sync(token_ids_list)
Request log probabilities of next tokens in a batch synchronously.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
token_ids_list
|
list[list[int]]
|
A list of token ID lists, each representing a prompt to the language model. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
A tensor of normalized log probability tensors, one for each prompt in the input list. |
Source code in genlm/backend/llm/vllm.py
clear_cache()
AsyncTransformer
Bases: AsyncLM
Asynchronous wrapper around a HuggingFace causal language model with caching support.
This class provides an asynchronous interface to HuggingFace language models with automatic batching and caching (output and KV) for improved efficiency.
Source code in genlm/backend/llm/hf.py
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
|
from_name(model_id, bitsandbytes_opts=None, hf_opts=None, **kwargs)
classmethod
Create an AsyncTransformer instance from a pretrained HuggingFace model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_id
|
str
|
Model identifier in HuggingFace's model hub. |
required |
bitsandbytes_opts
|
dict
|
Additional configuration options for bitsandbytes quantization. Defaults to None. |
None
|
hf_opts
|
dict
|
Additional configuration options for loading the HuggingFace model. Defaults to None. |
None
|
**kwargs
|
Additional arguments passed to the |
{}
|
Returns:
Type | Description |
---|---|
AsyncTransformer
|
An initialized |
Source code in genlm/backend/llm/hf.py
__init__(hf_model, hf_tokenizer, batch_size=20, timeout=0.02)
Initialize an AsyncTransformer instance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
hf_model
|
A HuggingFace CausalLM model instance. |
required | |
hf_tokenizer
|
A HuggingFace Tokenizer. |
required | |
batch_size
|
int
|
Maximum queries to process in one batch during auto-batching. Defaults to 20. |
20
|
timeout
|
float
|
Seconds to wait since last query before processing current batch. Defaults to 0.02. |
0.02
|
Source code in genlm/backend/llm/hf.py
clear_cache()
clear_kv_cache()
reset_async_queries()
Clear any pending language model queries from the queue. Use this method when an exception prevented an inference algorithm from executing to completion.
cache_kv(prompt_tokens)
Cache the key and value vectors for a prompt. Future queries that have this prompt as a prefix will only run the LLM on new tokens.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
prompt_tokens
|
list[int]
|
token ids for the prompt to cache. |
required |
Source code in genlm/backend/llm/hf.py
batch_evaluate_queries()
Process a batch of queued language model queries.
This method is called internally when the batch_size
has been met or the timeout
has expired.
Source code in genlm/backend/llm/hf.py
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
|
add_query(query, future, past)
Add a query to be evaluated in the next batch.
This method is called internally when a next_token_logprobs
request is made.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query
|
list[int]
|
Token IDs representing the query prompt |
required |
future
|
Future
|
Future to store the result in |
required |
past
|
list[tuple[Tensor]] | None
|
Past key/value states from previous evaluation, or None if this is a new query |
required |
Source code in genlm/backend/llm/hf.py
walk_cache(token_ids)
Walk the cache tree to find the deepest node matching a sequence of tokens.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
token_ids
|
list[int]
|
Sequence of token IDs to follow in the cache tree |
required |
Returns:
Name | Type | Description |
---|---|---|
tuple |
|
Source code in genlm/backend/llm/hf.py
next_token_logprobs(token_ids)
async
Request log probabilities of next token. This version is asynchronous because it automatically batches concurrent requests; use with await
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
token_ids
|
list[int]
|
a list of token ids, representing a prompt to the language model. |
required |
Returns:
Name | Type | Description |
---|---|---|
logprobs |
Tensor
|
a tensor of with the language model's log (normalized) probabilities for the next token following the prompt. |
Source code in genlm/backend/llm/hf.py
next_token_logprobs_sync(token_ids)
Request log probabilities of next token. Not asynchronous, and does not support auto-batching.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
token_ids
|
list[int]
|
a list of token ids, representing a prompt to the language model. |
required |
Returns:
Name | Type | Description |
---|---|---|
logprobs |
Tensor
|
a tensor with the language model's log (normalized) probabilities for the next token following the prompt. |
Source code in genlm/backend/llm/hf.py
next_token_logprobs_uncached(token_ids)
Request log probabilities of next token. No KV or output caching, and does not support auto-batching.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
token_ids
|
list[int]
|
a list of token ids, representing a prompt to the language model. |
required |
Returns:
Name | Type | Description |
---|---|---|
logprobs |
Tensor
|
a tensor with the language model's log (normalized) probabilities for the next token following the prompt. |
Source code in genlm/backend/llm/hf.py
load_model_by_name(name, backend=None, llm_opts=None)
Load a language model by name.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
Hugging Face model name (e.g. "gpt2", "meta-llama/Llama-3.2-1B-Instruct") |
required |
backend
|
str
|
Backend to use for inference. Can be "vllm" or "hf". If None, defaults to "vllm" if CUDA is available, otherwise "hf". |
None
|
llm_opts
|
dict
|
Additional options to pass to the backend constructor. See AsyncVirtualLM and AsyncTransformer documentation for details. |
None
|
Returns:
Type | Description |
---|---|
AsyncLM
|
An asynchronous language model. |
Raises:
Type | Description |
---|---|
ValueError
|
If an invalid backend is specified. |
Source code in genlm/backend/llm/__init__.py
decode_vocab(tokenizer, byte2str_fallback='tokenizer')
Convert tokenizer vocabulary into byte and string representations.
Warning
The byte representation is the canonical form. The string representation is provided for convenience but may not decode properly for all tokens, especially those containing invalid UTF-8 sequences.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tokenizer
|
A Hugging Face tokenizer instance |
required | |
byte2str_fallback
|
str
|
Strategy for converting invalid UTF-8 bytes to strings. Options:
|
'tokenizer'
|
Returns:
Type | Description |
---|---|
tuple
|
(byte_vocab, str_vocab) |
Source code in genlm/backend/tokenization/vocab.py
TokenCharacterTrie
A trie data structure for efficient token-to-character mapping.
Source code in genlm/backend/trie/base.py
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
|
__init__(decode)
Initialize a TokenCharacterTrie
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
decode
|
list
|
List representing the token vocabulary. Each element of the list must be iterable. |
required |
Source code in genlm/backend/trie/base.py
weight_sum(ws)
Compute weight sum for each node in the trie.
For each node in the trie, this computes the sum of weights of all leaf nodes (tokens) that are descendants of that node.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ws
|
Tensor | ndarray
|
Token weights over the vocabulary of shape |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Summed weights for each node in the trie. |
Source code in genlm/backend/trie/base.py
weight_max(ws)
Compute weight max for each node in the trie.
For each node in the trie, this computes the maximum weight among all leaf nodes (tokens) that are descendants of that node.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ws
|
Tensor | ndarray
|
Token weights over the vocabulary of shape |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Weight max values for each node in the trie. |
Source code in genlm/backend/trie/base.py
batch_weight_sum(ws)
Batched equivalent of weight_sum
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ws
|
list[Tensor | ndarray]
|
Batch of token weights, each of shape |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Batch of weight values of |
Source code in genlm/backend/trie/base.py
batch_weight_max(ws)
Batched equivalent of weight_max
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ws
|
list[Tensor | ndarray]
|
Batch of token weights, each of shape |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Batch of weight max values of |
Source code in genlm/backend/trie/base.py
visualize(ws=None)
Visualize the trie structure using Graphviz.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ws
|
ndarray | None
|
Optional weight vector to display at each node.
Should be of length |
None
|
Returns:
Type | Description |
---|---|
Digraph
|
The generated graph object |
Source code in genlm/backend/trie/base.py
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
|
ParallelTokenCharacterTrie
Bases: TokenCharacterTrie
A GPU-optimized version of TokenCharacterTrie
that performs weight sum and max operations in parallel.
Source code in genlm/backend/trie/parallel.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
|
weight_sum(ws)
Computes weight sums given token weights.
For each node in the trie, this computes the sum of weights of all leaf nodes (tokens) that are descendants of that node. This is efficiently implemented using sparse matrix multiplication with a pre-computed reachability matrix.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ws
|
Tensor
|
Token weights, shape ( |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Summed weights for each node in the trie, shape ( |
Source code in genlm/backend/trie/parallel.py
batch_weight_sum(ws)
Batch version of weight_sum
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ws
|
Tensor
|
Batch of token weights, shape (batch_size × |
required |
Returns:
Type | Description |
---|---|
numpy.ndarray: Summed weights for each node in the trie, shape (batch_size × num_nodes). |
Source code in genlm/backend/trie/parallel.py
weight_max(ws)
Computes the max weights given the token weights.
For each node in the trie, this computes the maximum weight among all leaf nodes (tokens) that are descendants of that node. This is efficiently implemented using parallel scatter_reduce operations on GPU.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ws
|
Tensor
|
Token weights, shape ( |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Maximum weights for each node in the trie, shape ( |
Source code in genlm/backend/trie/parallel.py
batch_weight_max(ws)
Batch version of weight_max
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ws
|
Tensor
|
Batch of token weights, shape (batch_size × |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Maximum weights for each node in the trie, shape (batch_size × num_nodes). |
Source code in genlm/backend/trie/parallel.py
AsyncTokenCharacterTrie
An asynchronous wrapper for TokenCharacterTrie implementations that provides automatic request batching.
Source code in genlm/backend/trie/async_impl.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
|
__init__(trie)
Initialize an AsyncTokenCharacterTrie
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
trie
|
TokenCharacterTrie | ParallelTokenCharacterTrie
|
The underlying |
required |
Source code in genlm/backend/trie/async_impl.py
from_vocab(vocab, backend='parallel', **kwargs)
classmethod
Creates an AsyncTokenCharacterTrie
from a vocabulary.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
vocab
|
list
|
The vocabulary over which the trie will be defined. |
required |
backend
|
str
|
The trie implementation to use - either 'sequential' or 'parallel'. Defaults to 'parallel' which uses GPU acceleration when available. |
'parallel'
|
**kwargs
|
Additional arguments passed to the trie constructor |
{}
|
Returns:
Type | Description |
---|---|
AsyncTokenCharacterTrie
|
The initialized asynchronous trie instance. |
Source code in genlm/backend/trie/async_impl.py
weight_sum(ws)
async
Queue a weight_sum
request. Multiple concurrent calls will be automatically batched
together.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ws
|
Tensor
|
Token weights, shape ( |
required |
Returns:
Type | Description |
---|---|
ndarray
|
The calculated mass sums for the given distribution. |
Source code in genlm/backend/trie/async_impl.py
weight_max(ws)
async
Queue a weight_max
request. Multiple concurrent calls will be automatically batched
together.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ws
|
Tensor
|
Token weights, shape ( |
required |
Returns:
Type | Description |
---|---|
ndarray
|
The calculated max weights for the given distribution. |
Source code in genlm/backend/trie/async_impl.py
start()
Start the background processing task if not already running.
Source code in genlm/backend/trie/async_impl.py
cleanup()
async
Async cleanup - preferred method
shutdown()
Stop the background processing task and cleanup resources.